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Abstract

Critical scattering analyses for dilute antiferromagnets are made difficult
by the lack of predicted theoretical line shapes beyond mean-field models.
Nevertheless, with the use of some general scaling assumptions we have
developed a procedure by means of which we can analyse the equilibrium
critical scattering in these systems for H = 0, the random-exchange Ising
model, and, more importantly, for H > 0, the random-field Ising model. Our
new fitting approach, unlike the more conventional techniques, allows us to
obtain the universal critical behaviour exponents and amplitude ratios as well
as the critical line shapes. We discuss the technique as applied to Fey 93Zng o7F>.
The general technique, however, should be applicable to other problems where
the scattering line shapes are not well understood but scaling is expected to hold.

1. Introduction

Characterizations of the critical behaviour of model systems through experiments and
simulations are essential to verify the validity of theoretical models of phase transitions.
Scattering techniques are invaluable for characterizing the staggered magnetization (the order
parameter), M,, the antiferromagnetic fluctuation correlation length, &, and the staggered
susceptibility, x,, as functions of temperature, in pure and dilute antiferromagnets, which
prove to be ideal physical realizations of many model systems. Neutron scattering has been
particularly valuable in studies of antiferromagnets [1], although magnetic x-ray scattering has
also been employed to a limited extent [2]. Likewise, pulsed heat and optical techniques [3]
have been essential in determining the critical behaviour of the specific heat, C,,. The Ising
model is the simplest of systems, with each spin having only two possible states, and becomes
an exact model for the anisotropic antiferromagnets as the temperature 7' approaches the trans-
ition temperature 7.. Three of the most fundamental phase transitions are those of the pure
Ising model, the random-exchange Ising model (REIM), and the random-field Ising model
(RFIM). The pure Ising model has the exact Onsager [4] solution for dimension d = 2.
For d = 3 only approximate renormalization solutions, simulations, and expansions exist.
Antiferromagnets exist with strong anisotropy—such as FeF, for d = 3. This system exhibits
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universal Ising static critical behaviour close to the transition temperature [5—7]. The random-
exchange model system is realized when the magnetic ions are randomly substituted with
diamagnetic ions in Fe,Zn;_F, for x > x,, where x, = 0.246 is the percolation threshold
for this body-centred-tetragonal magnetic lattice if only the dominant next-nearest-neighbour
interaction [8] is considered. Below x, no phase transition can occur for geometric connectivity
reasons. The anisotropy increases as x decreases [9]. As a result of the high anisotropy for
these systems measured using neutron scattering [10], asymptotic Ising critical behaviour is
well followed in the reduced temperature range |¢t| = (T — T,)/T.| < 1072, where T, is the
transition temperature [6].

Various experimental techniques can be used to extract universal Ising parameters
associated with the asymptotic critical behaviours in antiferromagnets [11]. The universal
parameters accessible through scattering techniques include the exponents and amplitude ratios
associated with the asymptotic power-law behaviours

E=&1™" )
where + and — refer to t > 0 and ¢ < 0, respectively,

M, = Molt|? ©)
where M) is non-zero for ¢t < 0 only,

Xe = Xo 1t 3)
and, for antiferromagnets with quenched randomness, the disconnected susceptibility

a =g “)

for ¢ # 0. Pulsed heat and optical techniques can be used to obtain the specific heat critical
behaviour:

C=A*t"+B 3)
which becomes symmetric and logarithmic:
C = Alnjt| (6)

when o — 0.

Equations (1)-(6) represent the asymptotic behaviours exhibited for data with sufficiently
small |z|. The range of asymptotic Ising behaviour in antiferromagnets with anisotropic short-
range interactions, for example, is partly determined by the anisotropy strength. For example,
whereas FeF, shows [5] asymptotic behaviour for || < 1072, the less anisotropic isomorph
MnF, [12, 13] shows asymptotic behaviour only for |t| < 1073, If data are taken outside the
asymptotic range of |¢|, but still within the critical region, fits to the power-law expressions
yield only effective exponents [14] and effective amplitude ratios. In such cases, it may
be more effective to use scaling function analyses, which include crossover to asymptotic
critical behaviours, when some quantity such as the applied field, H, can be varied. We will
briefly discuss this with regard to specific heat analyses done principally using Feg 93Zng ¢7F>
data. Scaling functions are also of great utility in fitting scattering data when the line shapes
are not well known. For example, at constant H in the asymptotic region, we can use the
fact that the scaling functions can depend only on |g|/k, where ¢ is the distance from the
antiferromagnetic Bragg scattering point, (100) for FeF,, in reciprocal-lattice units (rlu), and
k = 1/& is the reciprocal correlation length for antiferromagnetic fluctuations. In this work,
we will show how the general properties of the scaling functions can be utilized to advantage
in the characterization of the random-exchange and random-field scattering data obtained [15]
using Feg 93Zng ¢7F,. However, the technique has more general utility; it can be used in any
case where theory does not provide adequate models of scattering functions but scaling is
expected to hold.
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2. Specific heat scaling

Although we primarily focus here on the scaling behaviour of the critical scattering of the
d = 3 dilute antiferromagnet, it is instructive to review briefly the success of scaling analyses
in the study of the specific heat critical behaviour in the same system. Not only will this
demonstrate the usefulness of the scaling approach, but also it will highlight the results for
the specific heat behaviour, which are complementary to the scattering results but show the
largest discrepancy with simulation results for the RFIM. This will be important in our later
assessment of the agreement between simulations and experimental results.

In zero field, the dilute anisotropic antiferromagnet is predicted to have a transition
described by the random-exchange Ising model. One of the most striking changes in the
critical behaviour induced by random quenched dilution is observed in the specific heat for
d = 3. Whereas the pure FeF, sample shows o = 0.11, in agreement with theory [16], the
Harris criterion imposes the constraint that « < 0 upon dilution. Indeed, the exponent has
been found [17] to be « = —0.10 £ 0.02 experimentally. Monte Carlo studies also yield a
negative value [18]. Interestingly, with the application of a field, the RFIM specific heat is
again found to be divergent in experiments [17], with « =~ 0, as discussed below.

One way to utilize scaling functions is to attempt to collapse the experimental data onto a
scaling function of the appropriate scaling argument. The collapse will only work well if the
critical parameters used in the data collapse are correct. The RFIM scaling behaviour of the
free energy, for example, is expected to have the form [11]

F ~ H2(2_a)/¢RFg(|tH|H_2/¢RF) @)

where ty = (T — Ty + bH*)/ Ty, Ty is the zero-field transition temperature, b is a small
mean-field (MF) parameter, « is the zero-field specific heat exponent, and ¢gf is the RFIM
crossover exponent. When a new phase transition occurs at T = T.(H), the asymptotic limit
of the specific heat can be obtained [19] from the free energy in the limit |¢| — O:

3°F ) )
C=— — H*ZW/¢RFg/(|tH|H*2/¢RF) ~ HZ((!*OI)/WFM*G 8)
0T?
where t = (T — T.(H))/T.(H). For & = 0, this becomes
C ~ H™ 2/ 1pt| 9)

which is symmetric above and below T.(H). Note that the field dependence of the peak
amplitude is dependent on . In the scaling plots, both the shape- and the field-dependent
amplitude must be correct for the data to collapse onto a single scaling function.

The scaling behaviour of the specific heat has been experimentally demonstrated for both
d = 2, where no transition takes place [20], and d = 3, where a new transition occurs [17]. In
both cases, the critical parameters can be determined accurately from the quality of the data
collapse onto a single scaling function. The most accurate measurements have been obtained
using the optical linear birefringence technique which has been shown to faithfully represent
the magnetic specific heat behaviour [3,17,21]. It was shown that the experimental data for
the d = 3 system Feg.93Zn ¢7F>, when divided by H —20/¢kr collapse onto a single scaling
function if « = —0.10 £ 0.02 and ¢rr = 1.42 &£ 0.03, the latter having been determined by
measurements on Fe,Zn;_,F, with several different concentrations [22] and predicted [23] to
be a few per cent larger than the zero-field staggered susceptibility exponent measured [24]
to be y = 1.31 £ 0.03. Note that if the RFIM specific heat exponent & = 0, as indicated
by the asymptotic shape of the curve, the random-exchange exponent must have the value
o = —0.10 £0.02, which is consistent with the earlier value « = —0.09 & 0.03 obtained [25]
by fitting the data from a lower-magnetic-concentration sample with x = 0.60 to a power law.
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Hence, both the shape- and field-dependent amplitudes of the critical peak are consistent with
a = 0, i.e. a symmetric, logarithmic divergence.

Further evidence that & is close to zero is obtained from Faraday rotation experiments
under a constant field or at constant temperature. Faraday measurements yield the critical
behaviour of the specific heat, but with a different field amplitude to the specific heat peaks.
Near the phase transition it was shown by Kleemann ef al [19] that

2
B_M — °F ~ H2(1+5t—a—¢RF/2)/¢RF|t|—5t (10)
oT 0HOT
which becomes, for & = 0,
% ~ H2(1—Dt—¢RF/2)/¢RF 1n|t| (11)
oT
and
2
B_M — °F ~ H2(2+51—l¥—¢kp)/¢’kp|t|—5t (12)
oH dH?
which becomes, for & = 0,
% ~ H2(2—a—¢RF)/¢RF ln|t|. (]3)
oH

The field-dependent amplitudes of logarithmic peaks have been measured, with the results
2(1 —a — ¢rr/2)/Prr =~ 0.56 and 2(2 — @ — ¢rFr)/Prr ~ 0.97. With the measured value
orr = 1.42 £ 0.03, these two equations yield « = —0.11 £ 0.02 and « = —0.11 £ 0.04,
respectively. These values are consistent with the values « = —0.10 & 0.02 from the
Fey.93Zng o7F, experiment [17] and « = —0.0920.03 from the Feg ¢0Zng 49F> experiment [25].
Hence, the field-dependent amplitudes as well as the peak shapes are consistent with o ~ 0.
A scaling analysis would similarly require @ ~ 0 in the case of Faraday rotation for a good
data collapse. The result @ ~ 0 from experiments contradicts the Monte Carlo result [26]
a=-05+0.2.

3. Scattering scaling function

We next turn to the scattering function, which should obey scaling properties close to T.(H).
Within the static approximation [1], the intensity of the magnetic critical scattering from high-
quality single-crystal magnetic systems is proportional to the Fourier transform of the spin—spin
correlation function S(g) = [{s45—4)] convoluted with the instrumental resolution, where the
angle brackets signify a thermal average and the square brackets signify a configurational

average.
The spin—spin correlation can be expressed as
S@) = x, + 1" (14)
where
Xs = [<qufq) - (Sq><sfq)] (15)
is the staggered susceptibility and
X1 = Usq) {s—g)] (16)

is the disconnected susceptibility. For line shapes obtained at one value of the field, we expect
a scaling function that only depends on the ratio |g|/k of the two physically relevant inverse
length scales. For |g| > O,

x:(q) = ATk f(q/K). (17)
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For pure, translationally invariant systems, Xf” = M,?8(g). For random systems, on the other
hand, Xsd” may have a g-dependent contribution. In particular, in RFIM systems, such a term

is induced by the random field, giving [11] for |g| > O at constant H,
1 (@) = ATBF (g k). (18)

Hence, S(g) involves two possibly independent scaling functions, f(q/«) and g(g/k), and
two possibly independent exponents, y and y. This makes the method of collapsing data onto
scaling functions extremely difficult since the contributions to the data from the two scaling
functions are not easily separable.

To fit the data we must, in principle, use data only in the range of small « (i.e. small |¢])
and |g| in order to be sure that we are dealing with asymptotic behaviour. In the study of FeF,,
data were used in the range |t| < 1072 to obtain the most reliable exponents and amplitude
ratios, since this was shown to be in the asymptotic range for pure Ising behaviour in specific
heat critical behaviour [5] measurements. In the Feg 93Zng o7F, experiments, we used data for
|t| < 1072 since this is the range for which the specific heat shows the RFIM logarithmic
behaviour [17]. However, we typically use a wide range of |g|. The crossover at large |g]| is
relatively unimportant since the critical scattering intensity becomes very small. On the other
hand, including data at large |g| helps to set the level of background scattering.

Many scattering critical behaviour analyses are done using the simple MF Lorentzian for
lg| > 0:

+
1+q2/k?

flg) = (19)

giving
+
S(q) = x,(q) =

q* +«? 0)
for g # 0, consistent with the fact that = 0 in the MF approximation. Since the upper critical
dimension, d,,, above which the MF equations are correct, is four or greater, the Lorentzian line
shape can only be approximate for three dimensions. Deviations from the MF Lorentzian line
shape should become evident as one approaches the transition temperature and are generally
found to be much more important below the transition temperature. This has been discussed
in relation to the pure d = 3 Ising antiferromagnet FeF, [6]. Scattering data for FeF, were
analysed using approximations to the line shapes proposed by Fisher and Burford [27] (BF)
forT > Ty:

(1+9%q* /)2

e sy @1
and by Tarko and Fisher [28] (TF) for T < Ty:
1 2.2 7,.2\0+n/2
flafi) o« —— PG/ (22)

(I+9/'q* k) (1 +¢"%q? [k?)°
where ¢, ¢/, ¢", o,y = 1+1/2n¢>, and ' = 1+1/2n¢” + o (¢'* — ¢"?) are fixed at values
determined from the numerical studies. The values are given in table 1. The expressions
have the correct scaling behaviour in the limits |¢|/k — 0 and |g|/k — oo, and serve as
appropriate interpolation functions between those limits. We show the critical exponents and
amplitude ratios obtained from fits of the data obtained for 10™* < |f| < 1072 using these
scaling forms in table 1 as well as theoretically determined universal critical parameters. The
experimental and theoretical values serve to compare with those from similar analyses done
on the diluted system Feg 93Zng o7F, to be discussed next. The corrections to MF values are
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Table 1. Experimental and theoretical values for the critical parameters of the d = 3 pure Ising
model. Data were fitted over the range 107% < |t| < 1072, Note that ¥ = 1+ 1/2n¢?* and
Y = 1+1/2n¢” +0(¢'> — ¢”?). Values marked with * are fixed parameters in the fitting process.

Parameter FB and TF d =3 Ising [16]
T, 78.418 +0.001 K

v 0.64 £0.01 0.63002 4+ 00023
Ky /Ky 0.53 £0.01 0.510 £ 0.002
y 1.25+0.02 1.2371 £ 0.004
xXo/Xo 4.6+0.2 4,77 £0.02

n 0.056*

W 1.001*

o 2n=0.111*

) 0.15*

@’ 0.3247*

@ 0.09355*

v/ 1.0137*

only significant for |f| < 1073 and are most significant for T < Ty. Since many d = 3
studies do not probe critical behaviour any closer than this to 7., the Lorentzian line shape
generally serves satisfactorily for extracting estimates of the critical exponents. Obviously,
more precise measurements that probe regions of smaller |#| can yield much more accurate
critical parameters, but only if a suitable line shape is used.

Data for the pure d = 2 case of K,CoF, has been analysed in a similar manner [29]. In
this case, n = 0.25 and an analysis using the MF Lorentzian fails markedly below Ty. The
appropriate TF and FB equations, in contrast, yield critical behaviour consistent with the d = 2
Ising model.

The scattering function for the dilute antiferromagnet is predicted to have an additional
term not present in the pure case [30] that may affect experimentally determined corrections to
scaling and, possibly, measurements of the amplitude ratio for x,. The exponents are probably
not influenced, since this extra contribution vanishes as 7 — Ty. A fit to a simple Lorentzian
seems to work reasonably well for data with |[f| < 1073 for the very dilute antiferromagnet
Feg 46Zng 54F,. For the random-exchange Ising model [16], n & 0.04, which is similar to
the value for the pure case. Hence, it is reasonable to say that the Lorentzian line shape
works well in this reduced temperature range just as it does in the pure d = 3 Ising case.
For data closer to T,, however, just as in the pure case, we would expect deviations from the
MF Lorentzian, particularly for 7 < T,. Unlike in the Tarko—Fisher case for the pure Ising
model, no approximants have been worked out for the random-exchange model for use in data
analyses beyond the MF approximation. One possible approach is to use the same TF and FB
expressions as were developed for the pure case. This assumes that the line shapes for the pure
and REIM are very similar. Such an approach was successfully employed to analyse the data
for the dilute d = 2 antiferromagnet [31]. Another strategy is to use the same forms, but to let
the TF/FB parameters be free fitting parameters. Such functions would satisfy scaling in the
proper limits and would, one would hope, be very good interpolative functions between those
limits. We will describe below results for Fe 93Zn o7F, obtained using the latter method.

We next turn to the more difficult case of the random-field scattering in Fey 93Zng 7 F>,
which occurs for H > 0. In the case studied, H = 7 T. We expect the scattering function for
lg] > 0 to be

S(q) = A*K"2 f(q /) + BEAT T g(q /i), (23)
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Taking into consideration the instrumental resolution as well as the two separate scaling
functions, there is little chance of using the data directly to determine the two independent
scaling functions. Hence, we must start with model functions and test their appropriateness.
The first natural test functions to use in the data analysis are the MF scaling ones [32]:

AiK—Z BiK—Z
+
L+q?/k? (1+q2/k?)?

S(g) = (24)
where we might expect the amplitudes A* and B* to be temperature dependent, since 1 and 7
are not, in fact, zero. We did such an analysis previously [33] and found reasonable fits at all
temperatures in the sense that the line shapes yielded values of k and x;, = A%k 2. However,
when an attempt was made to fit these values to power-law behaviours, reasonable results were
obtained above the transition but not below. The results above T.(H) are v = 0.90 £ 0.01
and y = 1.72 £0.02. These values are consistent with results above T.(H ), obtained [34] for
x = 0.6 using a MF analysis. At these lower concentrations, equilibrium critical behaviour is
not obtained below T, (H ), but the data analysis was done well above T, (H) where equilibrium
prevails.

We note that the failure of the MF analysis below T,(H) is very similar to the situation
observed [29] for the pure d = 2 antiferromagnet K,CoF,4. The MF equations fail in that case
because d = 2 is far from the upper critical dimension d,, = 4 and n = 0.25, in contrast with
the pure d = 3 case where = 0.04. The TF expression developed for d = 2 served nicely for
the data analysis and agreement was found with theory. Interestingly, the FB scaling function
for T > Ty is not very different from the MF one. For the d = 3 RFIM, the value of 7 is
predicted to be even larger, perhaps as large as n = 0.5. Hence, it is not that surprising that
the MF data analysis fails below 7. (H) in this case. To proceed, we must go beyond a simple
MF line shape analysis.

Since there is not yet a theoretical line shape available beyond the MF level, we must try
to use scaling properties to guide us. However, if there are two independent scaling functions,
as in equation (24), the task becomes formidable. Fortunately, there are two approximations
motivated by theoretical [35] and simulation [18] work. The first is that n = 27, a limiting
case of the Schwartz—Soffer [36] inequality 77 < 2. The second is that g(¢/k) = f*(g/K)isa
very good approximation. We adopt these two simplifications, making the scattering function
for |g| > O the more manageable expression

S(q) = AT 2 £ (g /) (1 + BEATK"2 f(q/x)). 25)

Itis not clear at this point how accurate these approximations are. However, it is not possible to
proceed without them and they appear to be well justified. Itis highly unlikely that experiments
will be able to test the validity of the assumptions directly. Only further theoretical progress
can provide a better starting point for the data analysis. Note that the MF expression in equation
(24) is a special case of this for n = 0. We are still faced with the correction to the instrumental
resolution, however, which itself depends on the line shape that we are trying to determine [6].
Hence, it is still hard to scale the data directly without an explicit functional form for f(q/«).
To simplify the procedure further, therefore, we have adopted as our scaling functions the TF
and FB scaling functions except that we allow all of the parameters to vary. Hence, we are
assured of the proper scaling in the limiting cases of |¢g| — 0 and k — 0 and we hope that
the interpolation between these limits will be adequate with the parameters determined from
the fits of the data. Unfortunately, the usual technique of fitting each scan separately, where
a scan is made for ¢ at fixed T, and then extracting the exponents from power-law fits to the
resulting « and y; cannot work well since there are now so many free parameters, including
the various exponents, amplitudes, and the TF/FB parameters. We can, however, fit all the data
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scans simultaneously, since the line-shape parameters are all the same for every temperature
forT < T.and T > T, and the critical exponents are the same for all 7. The new technique has
the advantage over the more classical technique in that the line shape does not need to be known
beforehand. In the RFIM, the line shape is both unknown and far from the MF prediction, so
the classical method using the MF line shapes failed to yield the critical behaviour parameters.
Our new procedure using the TF and FB line shapes with variable parameters and fitting all of
the data simultaneously, on the other hand, was successfully employed for the H > 0 random-
field Ising behaviours of Fey 93Zng o7F, and yielded both the critical behaviour parameters and
the critical scattering line shapes. Both the classical and the new techniques worked well for
the H = 0 case in which the line shapes are nearly mean-field ones and much simpler than the
RFIM ones. This demonstrates the reliability of the new technique and we can apply it with
some confidence to the RFIM, where the more classical technique fails to yield results.

4. Experimental and fitting details

Adding to the difficulty of implementing scaling in the scattering line-shape analysis is the
necessity to account for significant instrumental resolution corrections. The instrumental
resolution can be measured for a particular spectrometer configuration by measuring the
width of the magnetic Bragg scattering peak at low temperatures. The Bragg scans in the
transverse, longitudinal, and vertical directions well below the transition temperature yield
the response to scattering from the Bragg peak. Theoretically, the Bragg peak is a delta
function and in practice it is much narrower than the instrumental resolution for good-quality
crystals. Since the scattering in these anisotropic crystals is well described within the static
approximation, the scans in the three directions yield the widths along the three principal axes
of the resolution ellipsoid. If we have a theoretical line shape, we can use the measured Bragg
scattering scans to numerically integrate the line shape which can then be compared directly
with the scattering data. Alternatively, other groups have used Gaussian (or with less accuracy
triangular) approximations to the Bragg scans and then analytically integrated to obtain the
resolution corrections. In this study we exclusively use the numerical integration technique.
For resolution curves measured at uniform steps in g, we have, for the intensity in transverse
data scans,

I(g) ~ (Z S((g —qo—a)’ +b* + c2>Tavac) / (Z mm) (26)

where the sums are over a, b, and ¢, and g accounts for imperfect alignment in the transverse
direction. For a well aligned crystal, go is usually much smaller than the resolution width
in the transverse direction. Misalignments along the vertical and longitudinal directions are
generally inconsequential for a well aligned crystal since the resolutions are much coarser in
these directions than in the transverse one. T,, L;, and V, are the approximately Gaussian
Bragg line shapes measured at low T using evenly spaced steps in ¢. This is the technique
explained [6] in detail in the context of a study of FeF,. If a crystal has a small mosaicity, this
can also be approximately taken into account in the same manner.

To fit the resolution-convoluted line shape to the scattering data, we use a non-linear
least-squares fitting routine to determine the parameters of the theoretical line shape and
critical exponents. Note that with each iteration of the fitting program, the line shape must be
reintegrated over the resolution ellipsoid since the amount of correction from the resolution
convolution depends on the line shape and, hence, the fitted parameters. Since the resolution
correction in neutron scattering experiments is substantial and line-shape dependent, it is
very difficult to determine the line shape directly from the data. Hence, in the absence of a
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theoretical model, we must choose a trial function that satisfies the correct scaling requirements
and allows suitable flexibility in the fits of the data. Our strategy is to use the TF and FB line
shapes described above.

For the experiments, we used two samples of Fegg3Zng7F,. One is the same large
sample as was used in specific heat experiments [17]. It is somewhat irregular in shape and
has a mass of 1.35 g. The magnetic concentration gradient limited the range of data unaffected
by rounding to || > 1.15 x 1073. The second is a slice cut from the large sample with
its faces perpendicular to the magnetic concentration gradient. It is approximately one tenth
the mass of the original sample. The smaller sample was used to obtain data closer to the
transition with |¢] > 1.14 x 10~*. The data for both samples were used simultaneously in
the data fits with different instrumental resolution corrections appropriate to the two samples
and the spectrometer configurations used to make measurements on them. Neutron scattering
measurements were made at the Oak Ridge National Laboratory High Flux Isotope Reactor
using a two-axis spectrometer configuration. We used the (002) reflection of pyrolytic graphite
(PG) at an energy of 14.7 meV to monochromate the beam. We mainly employed two different
collimation configurations. The lower resolution, primarily used for the large sample, is with
70 minutes of arc before the monochromator, 20 before the sample, and 20 after the sample.
Primarily for the thin sample, we made scans with 10 minutes of arc before and after the sample.
Two PG filters were used to eliminate higher-order scattering. The carbon thermometry scale
was calibrated to agree with recent specific heat results [17] for the H = O transition. The
field dependence of the thermometry was also calibrated. All scans used in this report, other
than those used for obtaining the resolution ellipsoid, are transverse ones about the (100)
antiferromagnetic Bragg point.

5. Fitting results

We applied the techniques described above to the random-exchange behaviour (H = 0), where
there is only one term in the scattering function for |¢| > 0. We first did the fits using the
MF line shapes imposed by setting o = 1 and ¢, ¢’, and ¢” equal to zero. The results for the
fitted critical parameters are essentially identical to the results from the conventional method
of fitting each scan to obtain the temperature-dependent correlation and susceptibility, and
subsequently fitting them to extract the exponents and amplitude ratios. The results are shown
in table 1. We include the expressions for normalized P in the table, which are most useful
for relative comparisons between fits. The values are not close enough to unity to consider
the fitting functions statistically perfect ones. Very small systematic errors from the resolution
corrections and the approximations in the line shapes can easily account for values of P
being somewhat larger than unity. The goodness of fit is better judged from the scaling plots
discussed below. The agreement between the two methods of fitting the data gives us some
confidence in fitting the field data, for which the line shape is unknown, using the technique
in which all data are simultaneously fitted. We proceed beyond the MF level by doing the fits
with the TF and BF parameters as free parameters.

The fitting results are shown in table 2. The range of data was restricted to the reduced
temperature range |t| < 0.15 and includes 2198 data. The results for the critical exponents and
amplitudes are not very different from the previous result and the line shape is not very different
from the MF one. When examining individual scans, we observe no systematic deviations of
the data from the fit at any temperature for which data were included in the fit. We show
representative scans in figure 1, including data above and below 7,.. No systematic deviations
of the data from the fits are evident, indicating that the line shapes work well for the data within
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log,, (I(counts))

log,, (I(counts))

3.5

2.5
2.4

2.2

1.8

1.6

1.4

Table 2. The values found for the parameters from the fits for the # = 0 T data. The exponents
and amplitude ratios are defined in the text. C is a constant, g-independent background scattering
term. The scattering data for the large sample were fitted for |¢| > 1.15 x 1073 and the data for the
small sample were fitted for |¢| > 1.14 x 107, T, was fixed in the case of the scattering fits. The
first column of results is for the MF line shapes. The second is the TF/FB result obtained using the
pure line-shape parameters. The third column is obtained by allowing the TF/FB parameters to be

fitted along with the exponents.

Parameter Lorentzian TF/FB

T, (fixed) 72.73 K* 72.73 K*

n 0.079 £0.010 0.079 £0.012
v 0.70 £ 0.03 0.70 £+ 0.02
At 7.66 £0.15 7.59 +0.10
A~ 6.71 £0.10 6.42+0.10
Ky 0.57 £0.02 0.56 +0.02
Ko 1.21+£0.10 1.13 £ 0.05
o 1* 0.16 +0.20

¢ 0* 0.18 +0.02
@’ 0* 0.18 +0.02
¢” 0* 0.08 +0.10
C 0.0142 +£0.0002  0.0142 £+ 0.0001
x2 2.0 1.7

No of points 2280 2198

8 T=72.82K

f © T=72.63K ]
R
T,=72.73K
(b) I

O T=7245K
7??\\\‘\\\\‘\\\\‘\\\\‘7

—-0.1 -0.05 O 0.05 0.1
q (rlu)

Figure 1. The logarithm of the scattering intensity
versus g and the curves representing the corresponding
fits for H = 0. One scan for T > T.(H) and one for
T < T.(H) are shown for the large sample in (a) and
similarly for the small sample in (b).
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the range of |¢| used in the fits. To demonstrate that the data are well described by the fitted
scaling function, we subtract the scattering background from them, deconvolute them with the
instrumental resolution, divide them by A*«"~2, and plot them versus |g|/« in figure 2. The
data from the two samples are plotted separately, but the solid curves are identical in the two
cases. The scatter of the data for the small sample simply reflects the smaller size and the
resulting lower count rate. However, some of the data from the small sample are taken much
closer to T, since the rounding from the concentration gradient is less significant. The data
close to T, are very important in the fits. The consistent results obtained using MF and scaling
line shapes in the analyses give us confidence that the scaling technique may work well even
in cases where the line shapes are very far from being MF ones, as in the RFIM case that we
describe next.

3
20 —10 0 10 20
q/k

Figure 2. Scaled neutron scattering data, deconvoluted with the instrumental resolution, taken at
different temperatures at H = 0 T collapsed onto the universal function f(q/k). The scatter in
the small-sample data is larger due to smaller number of counts obtained in the thin sample. The
fit was made for |f| < 0.01. The solid curves, which are identical in the upper and lower plots,
represent the line shapes for 7 > T, and T < T, determined from the fits to the data.

For the RFIM case, the procedure is identical to the random-exchange one above, except
that the scattering function involves the more complicated expression of equation (25). In one
fit, we restricted the data range to |f| < 1072, with 2444 data, since this is the temperature
range over which the asymptotic logarithmic specific heat behaviour is observed [17]. In a
second fit, we further restricted the temperature range to |f| < 3 x 1073, with 1000 data, to
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test whether crossover effects were still significant. The fitting results are shown in table 3.
The two fits are rather consistent, suggesting that the results are close to the asymptotic
ones. In figure 3 we show data and the corresponding fits for a few scans to show that
there are no significant systematic deviations. After determining the line-shape parameters
and critical exponents, we used a procedure similar to that described above to demonstrate
that the data collapse onto scaling functions for T < T, and T > T,. We subtracted the
scattering background, deconvoluted the data with the instrumental resolutions, divided by
ATK"2(1 + BEA* k"2 f(q/«)), and, for clarity, plotted the results versus ko*|q|/k instead
of simply |¢q|/k so that the data for T > T.(H) and T < T,.(H) do not overlap. The results
of this procedure are shown in figure 4. The data for the large and small samples are shown
separately.

Table 3. The values found for the parameters from the TF/FB fits for the H = 7 T data. The data
for the large sample were fitted for |¢| > 1.15 x 1073 and the data for the small sample were fitted
for |t] > 1.14 x 10~*. T, was fixed in the case of the scattering data.

Parameter It] < 1072 lt] <3 x 1073

T, (fixed) 70.61 K* 70.61 K*

n 0.20 & 0.05 0.16 £ 0.06

v 0.88 & 0.05 0.87 £ 0.07

At 10.04+0.2 9.21+0.3

A~ 6.15+0.14 4.4540.15

I 1.1340.04 0.95+0.17

Ky 3.24+0.11 2.78+0.5

B* 4.7+£0.1) x 107> (3.00£0.13) x 107
B~ (4.0+£03)x 107> (8.0+£1.0) x 1073
o 0.67+0.5 0.86+0.6

¢ 0.16 & 0.04 0.08 £ 0.01

¢’ 0.39 4+ 0.25 0.36 +0.3

¢ 0.31+0.25 0.26 +£0.2

C 0.017 £ 0.001 0.016 + 0.001

x2 3.07 2.3

No of points 2444 1000

We have obtained from the scaling analysis not only the critical parameters but also
adequate approximations to the line-shape scaling functions for both the d = 3 random-
exchange and random-field Ising models. We already have the d = 2 and d = 3 pure line
shapes from the TF and FB expressions. It is instructive to compare all of these to the MF
Lorentzian line shapes. The comparisons are shown in figure 5, where we have plotted scaling
functions versus |q|/«. The upper plot is for T > T, and the lower one for T > T,. The
lowest curve in each case represents the simple Lorentzian line shape that is accurate in the
MF limit. The pure d = 3 Ising model line shapes show nearly MF behaviour for T > T,.
For T < T,, more significant deviations from MF behaviour are apparent. This is consistent
with the experimental results obtained using FeF,. The d = 3 experimental random-exchange
scaling functions indicate that there is not much difference between the pure and random-
exchange line shapes for d = 3. In contrast, for the random-field case, the deviations from
MF behaviour found in the experiments are very large for T < T.(H) in comparison to those
for the pure and random-exchange d = 3 Ising models. Even in the case for T > T.(H), the
deviations are large relative to those for the other d = 3 models. The very large deviations for
T < T.(H) are consistent with the failure of the MF Lorentzian line shape to produce values
for ¥ and y;, that obey power-law behaviour. For the pure d = 2 Ising model, shown as a
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Figure 3. The same as figure 1, but for the random-field  Figure 4. The same as figure 2, but for the random-field
Isingcase H =7 T. Ising case H = 7 T. The fit was made for |t| < 0.01.

reference for non-MF behaviour, the results for 7 < T,.(H) are the largest of the examples
shown, whereas the behaviour for 7 > T, is not far from MF behaviour. We see from this
comparison of the scaling functions, particularly for T < T, that MF behaviour is fairly well
followed for the d = 3 pure and random-exchange models, whereas for the random-field case,
where the upper critical dimension has significantly increased to d, = 6, the line shapes are
very non-Lorentzian. Determining the line shape from the scattering data is difficult. We have
achieved an approximate determination of the proper line shapes. Once theoretical results give
a firmer foundation for the trial function for the scattering line shape, we will be able to give
a more concrete comparison of the experiments to theory and simulations.

In table 4 we show the results on the critical exponents for the specific heat and neutron
scattering RFIM experiments compared with simulation results. For the pure d = 3 Ising
model, the experimentally determined universal exponents and amplitude ratios agree very
well with theoretical and simulation results. The experimental results from neutron scattering
were obtained using the TF and FB line shapes. The specific heat was obtained using both
pulsed heat and birefringence techniques, and clearly can be considered to be exceedingly
well characterized. For the REIM, we again have excellent agreement between experiment
and Monte Carlo simulations. The specific heat is determined most precisely using the
birefringence technique, but the results are consistent with the pulsed heat data. This case
can also be considered well characterized.
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Figure 5. A comparison of the logarithm of the scaling functions versus ¢/« for different models.
The pure cases are from the TF and FB expressions. The REIM and RFIM cases are from the
experiments, as described in the text. Note that the corrections to the MF equation are largest
below the transition. The random-field deviations for d = 3 are greater than the pure and random-
exchange ones, but are significantly smaller than the pure d = 2 scaling function below the
transition. Above the transition, all of the line shapes are close to MF ones.

The RFIM case shows mixed results when the experimental exponents are compared
with those from simulations. The scattering results for v and y are quite consistent with the
simulation values. The exponent 8 has not been reliably measured yet and its comparison with
simulation results is very important. The most glaring inconsistency is between the simulation
and experimental values of «, where the experiments indicate a symmetric, logarithmic
divergence and the simulations indicate a non-divergent peak. This inconsistency deserves
further study.

Although we have achieved fits to the data obtained in equilibrium scattering experiments
using Fe 93Zng o7F», the asymptotic behaviour is only observed very closeto T, (H)at H = 7T.
Our results may be somewhat influenced by the effects of crossover to random-exchange
behaviour. We hope in the future to do these experiments at much higher fields to ensure that
the results that we have obtained in this study are close to the asymptotic ones. In addition, by
using an apparatus capable of reaching much higher fields, we can study the scaling behaviour
of the scattering line shapes as a function of |¢| H~2/##* in a similar way to in our treatment of
the specific heat.
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Table 4. The d = 3 Ising critical exponents obtained from experiments on Fe,Zn;_,F, and the
corresponding values from Monte Carlo simulations and exact ground-state calculations. More
extensive experimental, theoretical, and simulation results are compared for the pure model in
references [37] and [16] and for the random-exchange model in references [18] and [41]. Note
that, unlike in the pure and REIM cases, it is well established that hyperscaling is violated in the
RFIM case [11], i.e. « + dv # 2 for the RFIM.

Renormalization and

Pure FeF, high-T expansions

o 0.11 4 0.005 [5] 0.1099 £ 0.0007 [16]
0.109 £ 0.004 [37]

B 0.325 4 0.005 [7] 0.32648 £ 0.00018 [16]
0.3258 +0.0014 [37]

v 0.64 +0.01 [6] 0.63002 £ 0.00023 [16]
0.6304 4 0.0013 [37]

y 1.25 £ 0.02 [6] 1.2371 £ 0.0004 [16]
1.2396 4 0.0013 [37]

n 0.05 [6] 0.0364 £ 0.0004 [16]

0.0335 £ 0.0025 [37]

Random FeyZn|_.F;
exchange (H =0)

Monte Carlo

=S R T ™R

0.10 [24]

—0.10+£0.02 [17]
0.350 £ 0.009 [38]
0.69 £ 0.01 [24]
1.31 £0.03 [24]

—0.051 +£0.013 [18]
0.3546 £+ 0.0028 [18]
0.6837 £ 0.0053 [18]
1.342 £ 0.010 [18]
0.0374 £ 0.0045 [18]

Random FeyZn|_.F;

Monte Carlo and

field (H >0) exact ground state
o 0.0+£0.02[17] —0.5+0.2 [26]
—0.55+0.2 [39]

B Not measured [40] 0.00 £ 0.05 [26]
0.02 +£0.01 [39]

v 0.88 +0.05 1.1 £0.2[26]
1.14 +£0.10 [39]

y 1.58£0.13 1.7+ 0.2 [26]
1.5+0.2[39]

n 0.20 £ 0.05 0.50 & 0.05 [26]

y 2y =3.16£0.26 3.3+£0.6[26]
3.4+£0.4[39]

n 2n =0.40 £0.10 1.03 £ 0.05 [26]

Acknowledgments

This work was supported by DOE Grant No DE-FG03-87ER45324 and by the Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC, for the US Department of Energy

under contract DE-AC05-000R22725.

References

[1] Collins M F 1989 Magnetic Critical Scattering (Oxford: Oxford University Press)

[2] Goldman A I, Mohanty K, Shirane G, Horn P M, Green R L, Peters C J, Thurston T R and Birgeneau R J 1987

Phys. Rev. B 36 5609



1726 Z SlaniC et al

[3] Ferre J and Gehring G A 1984 Rep. Prog. Phys. 47 513
[4] Onsager L 1944 Phys. Rev. 65 117
[5] Belanger D P, Nordblad P, King A R, Jaccarino V, Lundgren L and Beckman O 1983 J. Magn. Magn. Mater.
31-34 1095
[6] Belanger D P and Yoshizawa H 1987 Phys. Rev. B 35 4823
[7] Wertheim G K and Buchanan D N E 1967 Phys. Rev. 161 478
[8] Lorenz C D and Ziff R M 1998 J. Phys. A: Math. Gen. 31 8147
[9] de Araujo C B 1980 Phys. Rev. B 22 266
[10] Hutchings M T, Rainford B D and Guggenheim H J 1970 J. Phys. C: Solid State Phys. 3 307
[11] For reviews, see
Belanger D P and Young A P 1991 J. Magn. Magn. Mater. 100 272
Belanger D P 1998 Spin Glasses and Random Fields ed A P Young (Singapore: World Scientific) p 251
Nattermann T 1998 Spin Glasses and Random Fields ed A P Young (Singapore: World Scientific) p 277
[12] Barak J, Jaccarino V and Rezende S M 1978 J. Magn. Magn. Mater. 9 323
[13] Nikotin O, Lingard P A and Dietrich O W 1969 J. Phys. C: Solid State Phys. 2 1168
[14] Aharony A and Ahlers G 1980 Phys. Rev. Lett. 44 782
[15] Slani¢ Z, Belanger D P and Fernandez-Baca J A 1999 Phys. Rev. Lett. 82 426
[16] Campostrini M, Pelissetto A, Rossi P and Vicari E 1999 Preprint cond-mat/9905078
[17] Slani¢ Z and Belanger D P 1998 J. Magn. Magn. Mater. 186 65
[18] Ballesteros H G, Fernandez L A, Martin-Mayor V, Sudupe A M, Parisi G and Ruiz-Lorenzo J J 1998 Phys. Rev.
B 58 2740
[19] Kleemann W, King A R and Jaccarino V 1986 Phys. Rev. B 34 479
[20] FerreiraI B, King A R, Jaccarino V, Cardy J L and Guggenheim H J 1983 Phys. Rev. B 28 5192
[21] Dow K E and Belanger D P 1989 Phys. Rev. B 39 4418
[22] Ferreiral B, King A R and Jaccarino V 1991 Phys. Rev. B 43 10797
Ferreira I B, King A R and Jaccarino V 1991 J. Appl. Phys. 69 5246
[23] Aharony A 1986 Europhys. Lett. 1 617
[24] Belanger D P, King A R and Jaccarino V 1986 Phys. Rev. B 34 452
[25] Birgeneau R J, Cowley R A, Shirane G, Yoshizawa H, Belanger D P, King A R and Jaccarino V 1983 Phys. Rev.
B 27 6747
[26] Rieger H 1995 Phys. Rev. B 52 6649
[27] Fisher M E and Burford R J 1967 Phys. Rev. 156 583
[28] Tarko H B and Fisher M E 1975 Phys. Rev. B 11 1217
[29] Cowley R A, Hagen M and Belanger D P 1984 J. Phys. C: Solid State Phys. 17 3763
[30] Pelcovits R A and Aharony A 1985 Phys. Rev. B 31 350
[31] Hagen M, Cowley R A, Nicklow R M and Tkeda H I 1987 Phys. Rev. B 36 401
[32] Grinstein G, Ma S-k and Mazenko G 1977 Phys. Rev. B 15 258
[33] Slani¢ Z, Belanger D P and Fernandez-Baca J A 1998 J. Magn. Magn. Mater. 177-181 171
[34] Belanger D P, King A R and Jaccarino V 1985 Phys. Rev. B 31 4538
[35] Gofman M, Adler J, Aharony A, Harris A B and Schwartz M 1996 Phys. Rev. B 53 6362
[36] Schwartz M and Soffer A 1986 Phys. Rev. B 33 2059
[37] Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103
[38] Rosov N, Kleinhammes A, Lidbjork P, Hohenemser C and Eibschutz M 1988 Phys. Rev. B 37 3265
[39] Nowak U, Usadel K D and Esser J 1998 Physica A 250 1
[40] The only measurement is using the dilation technique at lower concentration where the system is not in
equilibrium, by
Ramos C A, King A R, Jaccarino V and Rezende S M 1988 J. Physique Coll. 49 C8 1241
[41] Folk R, Holovatch Yu and Yavors’kii T 2000 Phys. Rev. B 61 15114



